We will solve the Laplace equation:
$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = 0$$
With boundary conditions
$$V(0,y)=V(l,y)=V(x,0)=0 \textrm{ and } V(x,l)=V_0 \textrm{ for some } l \in \mathbb{R}$$
Assume a seperable solution of the form:
$$V(x,y)=X(x)Y(y)$$
Substituting and choosing a negative and real separation constant, we get
$$\frac{-X''}{X}=\frac{Y''}{Y}=-k^2$$
For the X equation:
$$\textrm{let } A_i \in \mathbb{R} \textrm{ be constants}$$
$$X'' - k^2 X=0$$
$$\implies X=A_1 cos(k x) + A_2 sin(k x)$$
Applying the boundary conditions
$$V(0,y)=0=V(l,y)$$
We get
$$A_1=0 \textrm{ and } kl=n \pi \textrm{ for } n \in \mathbb{Z}$$
For the Y equation:
$$Y'' + k^2 Y=0$$
$$\implies Y=A_3 e^{ky} + A_4 e^{-ky}$$
Apply the boundary condition
$$V(x,0)=0$$
$$\implies A_3=-A_4$$
$$\implies Y=A_3 e^{ky} - A_3 e^{-ky}=2 A_3 sinh(ky)$$
$$\textrm{let } B_n = 2 A_2 A_3$$
$$\textrm{So } V_n(x,y)=B_n sin \left ( \frac{n \pi x}{l} \right ) sinh \left ( \frac{n \pi y}{l} \right )$$
But this cannot satisfy
$$V(x,l)=V_0$$
So we must consider a linear combination of these solutions, ie
$$V(x,y)=\sum_{n=1}^{\infty} V_n(x,y)$$
So the boundary condition becomes
$$V_0=\sum_{n=1}^{\infty} B_n sinh(n \pi) sin \left ( \frac{n \pi x}{l} \right )$$
Use the Fourier trick (orthogonality of sines)
$$\int_{0}^{l} V_0 sin \left ( \frac{m \pi x}{l} \right ) dx = \int_{0}^{l} \sum_{n=1}^{\infty} \left [ B_n sinh(n \pi) sin \left ( \frac{n \pi x}{l} \right ) sin \left ( \frac{m \pi x}{l} \right ) \right ] dx$$
$$V_0 \left [ \frac{-l}{m \pi} cos \left ( \frac{m \pi x}{l} \right ) \right ]_{0}^{l} = \int_{0}^{l} B_m sinh(m \pi) sin \left ( \frac{m \pi x}{l} \right ) dx$$
$$V_0 \left [ \frac{(-1)^{m+1} l}{m \pi} + \frac{l}{m \pi} \right ] = B_m sinh(m \pi) \frac{l}{2}$$
$$2 V_0 [ 1 - (-1)^m ] = m \pi B_m sinh(m \pi)$$
$$B_m = \frac{2 V_0 [ 1 - (-1)^m ]}{m \pi sinh(m \pi)} \implies B_m=0 \textrm{ for even } m$$
Thus,
$$V(x,y) = \sum_{m=1}^{\infty} \frac{2 V_0 [ 1 - (-1)^m ]}{m \pi sinh(m \pi)} sinh \left ( \frac{m \pi y}{l} \right ) sin \left ( \frac{m \pi x}{l} \right )$$